Plant hormones: structure & function- The Biology Bug

Key terms: Plant hormones, chemical nature of hormones, Biological function of hormones, Auxins, Gibberlins, Ethylene, Cytokinin, Abscisic acid

Most of the physiological activities in plants are controlled by certain chemical substances which are called as plant hormones or phytohormones or growth hormones. They are the signalling molecules which act either as growth promoters or growth inhibitors. Plant hormones are simple molecules but have diverse chemical composition for growth and development of plant. Before going into details of phytohormones let us first understand how animal hormones differ from plant hormones.

  • Animal hormones are made by specific glands in endocrine system but in plants the phytohormones are not made by any specialized tissue.
  • Plant hormones have very short life and gets quickly vanished after their immediate action.
  • Unlike animal hormones, plant hormones are made in a small quantity.

There are several types of plant hormones such as auxins, gibberlins, cytokinins, ethylene, abscisic acid, flowering hormones, synthetic growth retardants etc. However, we will discuss first five basic hormones.

Auxins (Cell elongation)

The meaning of auxin is ‘to increase’ or ‘to grow’. The auxin was discovered while studying the bending of coleoptile of canary grass towards light. They observed that when unilateral source of light was provided to the growing coleoptile, it bended in the direction of light. This was because of the presence of auxins.

Chemical nature of Auxin

Indole-3-acetaldehyde, Indole-3-acetonitrile, Indole-3-ethanol, 4-chloro-IAA are found in plants. Certain substances identical to the properties of auxins are IBA (Indole butyric acid), 2,4-dichloro-phenoxy-acetic acid, Indole propionic acid (IPA) etc.

Biological functions in plant

  1. Cell elongation: The primary function of auxins is to stimulate the elongation of cells in shoot. They promote elongation and growth of stem and roots. Similarly the dormancy of buds can be broken for certain plants in temperate region with the help of gibberlin.
  2. Cell division: They help in cell division and promote the growth of certain tissue. For example, when auxin is added during the tissue culture, callus (mass of undifferentiated cells) is formed.
  3. Apical dominance: In most of the vascular plants it is observed that especially the plants which are tall and sparsely branched, if the terminal bud shows higher growth whereas lateral buds remained suppressed. Removal of the apical bud results in rapid growth of lateral buds. This phenomenon is caused by auxins and is known as ‘apical dominance’.
  4. Root initiation: Increase in auxin can promote the lateral branch roots i.e. higher the concentration of auxin, initiates more lateral branch roots. For example, application of IAA in lanolin paste to the cut end of young stem results in an early rooting.

Gibberlins (Cell differentiation)

They are essential for various processes such as seed germination, stem elongation, leaf expansion, pollen maturation etc. Gibberlins were discovered in Japan when rice plants were found to suffer from a disease, bakane (foolish seedling) disease. The diseased rice plants were found to be longer than the healthier ones. This was caused by Gibberella fujikori  and later the substance was isolated and named as ‘gibberlins’.

Chemical nature of Gibberlins

Gibberlins are weakly acidic growth hormones and contain a gibbane ring structure. The structural feature that all gibberlins have in common and defines them as a family of molecules, is that they are derived from ent-kaurene ring.

Biological functions of Gibberlins

  1. Seed germination: Germination starts vigorously if certain seeds are exposed to light or red light. This requirement of light has overcome with the help of gibberlic acid. For example, light sensitive seeds such as tobacco shows poor germination in dark. Therefore treatment of gibberlic acid helps in seed germination.
  2. Bolting effect: In many herbaceous plants the early period of growth shows rosette- habit with a short stem and cauline leaves (arrangement of leaves on stem). Gibberlin triggers the growth of sub-apical meristem which causes the rosette plant to grow faster. In these plants the internodal length is short. Gibberlin promotes the internodal elongation causing rise in the stem height. Such type of growth in stem of rosette plant is known as ‘bolting’.
  3. Leaf expansion: Gibberlins help in making the leaves broader as well as elongate them. This increase in the surface of area provides sufficient space for photosynthesis.

Cytokinins (Cell division)

Cytokinins mainly induce cell division. It either works individually or with auxins. It was discovered by Miller and Skoog, the first hormone they found was named as ‘kinetin‘.

Chemical nature of Cytokinins

Zeatin is the most abundant naturally occurring free cytokinin, but dihydrozeatin (DZ) and isopentyl adenine also commonly found in higher plants and bacteria.

Biological functions of Cytokinins

  1. Cell division: It induces cell division in non meristematic cells. Cytokinins along with the auxins induces root development, bud & shoot development.
  2. Cell enlargement: Cytokinins( specifically kinetin) induces cell enlargement. They promote the expansion of cells in the leaf disks.
  3. Apical dominance: They are antagonistic to auxins with respect to apical dominance which means cytokinins trigger the growth of lateral buds.
  4. Delay of senescence: The aging of leaves caused due to loss of chlorophyll and rapid breakdown of proteins. This process is known as senescence. Cytokinins delay the senescence by controlling protein synthesis and mobilization of resources.

Ethylene (Fruit ripening)

It is the only hormone in plants which exists in the gaseous state.

Chemical nature of Ethylene

It is the simplest olefinic gas which is highly volatile in nature, It is also flammable and undergoes oxidation to produce ethylene oxide.

Biological functions of Ethylene

  1. Fruit ripening: It is known as fruit ripening hormone. Ethylene lamps are used for ripening of certain fleshy fruits. There are different types of fruits that react differently with the exogenous application of ethylne. Hence it is more used in the food industry.
  2. Epinasty: When upper surface of leaf grows faster than the lower surface, the leaf curves downward and this phenomenon is called as ‘epinasty’. Ethylene causes epinasty in dicot plants. NOTE: Monocots do not exibit this response.
  3. Inhibition of geotropism(growth towards gravity): Ethylene can nullify the geotropic effect. Roots become negatively geotrpic while stem turns positively geotrpic.

Abscisic acid /ABA (Abscission)

It is also known as stress hormone because production of this hormone production of this hormone is stimulated by environmental conditions such as drought, water logging etc.

Biological function of Abscisic acid

  1. Abscission: It promotes the abscission of flowers and fruits.
  2. Stomatal closing: ABA controls closure of stomata when the plant undergoes water stress. It is observed that application of ABA to leaves of normal plants causes closing of stomata. It travels from mesophyll cells of chloroplast to the guard cells of stomata during the period of water stress.
  3. It is also known to inhibit the seed germination and causes seed dormancy.

Did you find this article useful? Please share your opinion in the comments below.

26 Replies to “Plant hormones: structure & function- The Biology Bug”

  1. In cases like this, you will have to go for a straight-forward picture frames.
    If this is a question of yours too, then you definitely should learn concerning the best processes to
    procure such things. It is maybe essentially
    the most worldwide of mediums, in the its practice
    along with its range.

  2. A person essentially assist to make critically posts
    I would state. This is the first time I frequented your web
    page and to this point? I amazed with the research you made to
    make this particular put up incredible. Wonderful job!

  3. Not all of them worthwhile there are several bad blog.
    Your website are profitable as long as you spent to analyze your number of people.
    The items possess been mentioned are exactly the beginning.

  4. This work reveals a sort of poetic mood and everyone would be attracted by it.
    Leonardo Da Vinci was given birth to inside the Florentine Republic on April 15th, 1452.
    Then it matters not if it’s heads or tail,
    you can predict the final results.

  5. I loved as much as you will receive carried out right here.
    The sketch is tasteful, your authored material stylish. nonetheless,
    you command get bought an edginess over that you wish be delivering the following.
    unwell unquestionably come further formerly again as exactly the same nearly a lot
    often inside case you shield this hike.

  6. Simply wish to say your article is as astounding.

    The clearness to your post is just excellent and
    i can assume you’re an expert in this subject. Well with your permission allow me to grasp your
    feed to keep updated with forthcoming post.

    Thanks one million and please carry on the rewarding work.

  7. Hey There. I found your blog using msn. This is a really well written article.
    I will be sure to bookmark it and return to read more of
    your useful info. Thanks for the post. I’ll definitely comeback.

  8. Ӏ got this web page from my friend who shared ԝith me concerning this web site and аt the moment this tіme I am visitting this web page
    and readіng very informative postѕ ɑt this place.

  9. Hi there! Someone in my Facebook group shared this website with us
    so I came to take a look. I’m definitely loving the information. I’m bookmarking and will be tweeting this to my followers!
    Fantastic blog and brilliant style and design.

Leave a Reply

Your email address will not be published. Required fields are marked *